科目名	電子情報工学	英語科目名	Electronic Information Engineering		
開講年度・学期	平成 28 年度 L:前期、R:後期	対象学科・専攻・学年	電気電子創造工学科 2 年		
授業形態	講義	必修 or 選択	必修		
単位数	1 単位	単位種類	履修単位		
担当教員	今成一雄	居室(もしくは所属)	電電・物質棟2階		
電話	内線 232	E-mail	imanari@小山高専ドメイン		
			授業到達目標との対応		
授業の到達目標			小 山 高 専 の 教育方針	学習・教育到達 目標(JABEE)	JABEE 基準
1. 基数法の変換が計算できる。			5		
2. 基本的な論理代数式が計算できる。			5		
3. 論理代数式の簡単化ができる。			5		

(5)

(5)

各到達目標に対する達成度の具体的な評価方法

4. 組合せ回路・演算回路の動作が説明できる。

5. 順序回路の動作が説明できる。

到達目標1、2:課題および中間試験において60%以上の成績で達成とします。

到達目標3~5:課題および定期試験において60%以上の成績で達成とします。

評価方法

全ての課題が〆切までに提出されていることが、再試験受験資格を含む評価最低条件です。

中間試験と期末試験の相加平均を90%、課題を10%として評価します。

試験時間は90分とし、教科書・参考書・コピー・電卓等の持ち込みは、原則的に認めません。

授業内容

1. ガイダンス	導入、ディジタルとアナログ
2. 論理回路の基礎	数値の表し方1
3.	数値の表し方2、データの表現1
4.	データの表現2
5.	論理回路の基礎1
6.	論理回路の基礎2、電子素子とディジタル回路1
7.	電子素子とディジタル回路2
8. 中間試験	
9. 中間試験	答案返却·解説
論理回路の設計	論理式の簡単化1
10.	論理式の簡単化2
11.	組合せ回路1
12.	組合せ回路2
13.	演算回路
14.	順序回路1
15.	順序回路2
定期試験	

16.定期試験返却・解説

キーワード	10 進数、2 進数、bit、Byte、AND、OR、NOT、Ex-OR、正論理・負論理、ブール代数、カルノー図、FF		
教科書	文部科学省検定済教科書「ハードウェア技術」実教出版(2013).		
参考書	春日「ディジタル回路」電気書院(2013).		

カリキュラム中の位置づけ

前年度までの関連科目	コンピュータ入門、基礎電気電子工学、創造工学実験 I	
現学年の関連科目	プログラミングⅠ・Ⅱ、創造工学実験Ⅱ	
次年度以降の関連科目	電子回路 I・II、ディジタル回路、集積回路設計	

連絡事項

講義中に適宜、課題を与えます。講義中に口頭試問を行い、学習の達成・理解度を確認します。 理解困難な点は随時学習相談に応じます、電子メールでも受け付けます。

シラバス作成年月日 平成 28 年 1 月 18 日作成、3 月 31 日修正(L,R 入替)、5 月 2 日修正(試験時間延長)